ADVANCED PAVEMENT TECHNOLOGY USED FOR REHABILITATION OF RUNWAYS AT EDMONTON INTERNATIONAL AIRPORT

Ludomir Uzarowski, Ph.D., P.Eng. and Rabiah Rizvi, B.A.Sc., Golder Associates Ltd.
Darrin Schuster, P.Eng. and Felipe Salgado, P.Eng., Edmonton International Airport
Carmine Bello, P.Eng., MMM Group Limited
ACKNOWLEDGEMENTS

- Richard Hart, Park Paving
- Kris Bourgeois, P.Eng., MMM Group Limited
- Pearl Leung, EIT, MMM Group Limited
PRESENTATION OUTLINE

- Introduction
- Pavement Investigation and Design
- Specification Development
- Construction
- Conclusions
INTRODUCTION

- Located in Leduc, Alberta
- Serves about 7 million passengers each year
- Flights – domestic and international
- Airside pavements include:
 - Runways 02-20 and 12-30
 - Network of taxiways
 - Multiple aprons
- Project included multi-year rehabilitation of both runways
PAVEMENT INVESTIGATION

- Review information from previous investigations
- Limited new geotechnical investigation by others
- Pavement visual condition inspection
- Limited Falling Weight Deflectometer (FWD) testing
- Limited Ground Penetrating Radar (GPR) survey
RUNWAYS 02-20 AND 12-30

- Original old concrete pavement overlaid with asphalt

- Typical pavement structure
 - 70 to 120 mm of HMA
 - 280 to 310 mm of PCC
 - > 600 to 1000 mm of granular base/subbase
 - Clay and silty clay subgrade
VISUAL INSPECTION FINDINGS

- Pavement distresses
 - Medium to high severity reflective cracking of PCC joints and cracks
 - Severe map cracking
 - Spalling
 - Localized severe ravelling
VISUAL INSPECTION FINDINGS

- Pavement distresses
 - Pumping
 - Permanent deformation
Pavement distresses

- Asphalt shoving
VISUAL INSPECTION FINDINGS

- Causes of distresses
 - Poor asphalt durability
 - Asphalt stripping
 - Poor condition of underlying concrete – joints and cracks
 - Drainage issues
 - Unsuitable asphalt mixes
REHABILITATION DESIGN

- Safety of the travelling public and minimizing potential for Foreign Object Debris (FOD)
- Minimize the need for emergency closures
- Staging of rehabilitation to minimize delays and impacts on airport operation;
- Time constraints
- Budget constrains

- FAA methodology
Rehabilitation sequence

- End 02 of Runway 02-20;
- End 12 of Runway 12-30;
- End 20 of Runway 02-20;
- End 30 of Runway 12-30;
- Centre portion of Runway 12-30
- Centre portion of Runway 02-20.
First year of the multi year program

- Rehabilitation of 900 m of Runway 02-20 starting from the Runway 02 threshold;
- Limited treatment on the Touchdown Area 12 on Runway 12-30;
- Limited treatment on the Touchdown Area 30 on Runway 12-30
- Emergency repairs of localized areas on both runways posing imminent potential of FOD
REHABILITATION DESIGN

- Runway 02-20
 - HMA removal from 900 m
 - Removal and replacement of 12 m of PCC along CL
 - Repair PCC in Rows 2 and 3
 - Place new HMA

- Runway 12-30
 - Partial or full depth removal of HMA
SPECIFICATION DEVELOPMENT

- Custom specifications to meet budget, material, environmental and loading requirements at the airport

- Specifications to address the causes of the distresses

- Specifications for
 - Concrete slab replacement
 - Concrete slab repairs
 - Granular base materials and placement
 - Asphalt tack coat
 - Asphalt mixes and paving

September 18, 2014
ASPHALT SPECIFICATION

- Customized Marshall mixes
- Focus on
 - Moisture susceptibility – TSR min 80
 - Crushed aggregates
 - PSV min 65
 - Tighter LA abrasion
 - Tighter gradation envelope
 - Polymer modified asphalt cements
 - Higher minimum asphalt cement content
 - Increased Marshall stability
PAVING REQUIREMENTS

- Tighter production tolerances
- Echelon paving to minimize number of cold longitudinal joints
- Joint heaters to improve quality of cold longitudinal joints
- Shuttle Buggy® to minimize thermal and gradation segregation, eliminate bumps during mix downloading
PAVING REQUIREMENTS

- Tighter compaction
- Joint construction and compaction
- Smoothness requirements
- Trial batches
- Test strip
Mixes developed using the 75 blow Marshall method

Mix design submitted for review and acceptance

Surface course mix

- 100% crushed aggregate
- 4.8% polymer modified asphalt cement (PG 64-37) in base course and 5.3% in surface course
- 4.0% air voids
- TSR 85% for base mix and 90.5% in surface mix
HAMA milling and slab repair and replacement
Exposed PCC slabs evaluation

<table>
<thead>
<tr>
<th>Row</th>
<th>Panel</th>
<th>Location</th>
<th>Direction</th>
<th>LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6E, 6E</td>
<td>approaching</td>
<td>LTE</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4E, 4E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>14E, 14E</td>
<td>approaching</td>
<td>LTE</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>19E, 19E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>20E, 20E</td>
<td>approaching</td>
<td>LTE</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>27E, 27E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>28E, 28E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>29E, 29E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>111E, 111E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>112E, 112E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>120E, 120E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>121E, 121E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>122E, 122E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>123E, 123E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>124E, 124E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>125E, 125E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>126E, 126E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>127E, 127E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>128E, 128E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>129E, 129E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>130E, 130E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>131E, 131E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>132E, 132E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>133E, 133E</td>
<td>leaving</td>
<td>LTE</td>
</tr>
</tbody>
</table>
CONSTRUCTION

- Concrete paving
CONSTRUCTION

- Concrete paving
CONSTRUCTION

- Concrete paving
Selected slabs replacement and repair using cross stitching
TRIAL BATCH AND TEST STRIP

- Trial batch and test strip required
- Trial batch samples were tested and accepted
- Test strip for the surface and binder course placed on the runway in non major areas
- Asphalt samples obtained from the test strip placement
- Compaction pattern established during test strip
Asphalt cores obtained from test strip to calibrate nuclear gauge

Test strip pavement surface inspected for
- Segregation
- Texture to ensure adequate friction
- Flushing and bleeding
HMA placement and compaction
HMA placement and compaction
CONSTRUCTION

HMA joint construction

COLD JOINT CHALLENGES

Innovative Approach to Construction of Durable Longitudinal Joints

Ludomir Uzarowski, Ph.D., P. Eng., and Vinny Henderson, EIT
Golder Associates Ltd.
Whitby, Ontario
Gary Moore, P. Eng.,
City of Hamilton, Ontario
Michael Halloran, CET
Region of Waterloo, Ontario
Susan Tighe, Ph.D., P. Eng.,
University of Waterloo, Ontario
CONCLUSIONS

- Critical aspects
 - Team work
 - Communication
 - Knowledge
 - Experience

- Proper pavement design

- Field and laboratory investigation
 - Identify causes of distresses and address them

- Specifications
 - Customize to reflect local conditions
CONCLUSIONS

- Mix designs
- Good construction practice
 - Trial batches
 - Test strips
 - Placement
 - Compaction
 - Joints
- No magic bullets available
- Good, advanced paving technology is available – use it!
THANK YOU!

QUESTIONS?

luzarowski@golder.com
rrizvi@golder.com
905-567-4444