Purpose

• Evaluate deterioration rates of asphalt surfaced pavements
 – Identify trends in deterioration rates
 – Identify what can be defined as normal deterioration
 – Compare normal deterioration ranges to historical data used in pavement management
Outline – Background

• Utilizing deterioration rates
• Historical deterioration rates
• ASTM standard change
 – Weathering and raveling redefined
• Northern climate airfields
 – Canadian and northern U.S climate airfields
Linear Lifetime Deterioration Rate

- **Pavement Condition Index (PCI) rating scale:**

 - 86-100, GOOD
 - 71-85, SATISFACTORY
 - 56-70, FAIR
 - 41-55, POOR
 - 26-40, VERY POOR
 - 11-25, SERIOUS
 - 0-10, FAILED

- \(\text{Lifetime det. rate} = \frac{100 - \text{PCI}}{\text{Age (years) at inspection}} \)
Utilizing Deterioration Rates

• Identify rapidly deteriorating pavements
 – Provides warning, allows for corrective action

• Identify slowly deteriorating pavements
 – Reuse these construction and maintenance practices on other pavements

• Predict future conditions
 – Planning of maintenance and rehabilitation
Historical Deterioration Rates

• “Normal” asphalt surfaced deterioration rates between 2 – 3 PCI points/year
 – Asphalt concrete (AC) pavements usually toward lower end of this range
 – Asphalt overlay over AC (AAC) and asphalt overlay over portland cement concrete (APC) pavements usually toward the higher end of this range
UFC 3-270-08 Deterioration Rates

- **Unified Facilities Criteria (UFC) 3-270-08, Pavement Maintenance Management**, provides ranges of pavement deterioration
 - Originally Army Technical Manual 5-623
- Low, normal, and high deterioration ranges for each pavement type defined
- Developed from 1982 survey data of Fort Eustis, Virginia
AC Pavement Deterioration Ranges

![Diagram showing deterioration ranges for AC pavement](image)

- **Low**
- **Normal**
- **High**

PCI vs **Age Since Construction**
AAC Pavement Deterioration Ranges

AC OVERLAY OVER AC PAVEMENTS

Low

Normal

High

PCI

Age since last overlay (Years)
APC Pavement Deterioration Ranges

AGE SINCE LAST OVERLAY

PCI

AC OVERLAY OVER PCC PAVEMENTS

LOW

NORMAL

HIGH
ASTM Standard Change

• Weathering/raveling previously recorded as single distress prior to 2010
 – All weathering levels recorded as low-severity weathering/raveling

• Weathering and raveling defined as unique distresses in 2010
 – PCI deducts for raveling same as previous weathering/raveling deducts
 – New PCI deducts developed for weathering
ASTM Standard Change Impact

- A theoretical comparison performed using 100% density, new and old ASTM Standard definitions

<table>
<thead>
<tr>
<th>Distress Observed (New ASTM Criteria)</th>
<th>PCI Value</th>
<th>Old ASTM</th>
<th>New ASTM</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Low Raveling</td>
<td></td>
<td>74</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>100% Medium Raveling</td>
<td></td>
<td>43</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>100% High Raveling</td>
<td></td>
<td>30</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>100% Low Weathering</td>
<td></td>
<td>74</td>
<td>94</td>
<td>20</td>
</tr>
<tr>
<td>100% Medium Weathering</td>
<td></td>
<td>74</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>100% High Weathering</td>
<td></td>
<td>74</td>
<td>43</td>
<td>-31</td>
</tr>
<tr>
<td>100% Low Weathering/Low Raveling</td>
<td></td>
<td>74</td>
<td>69</td>
<td>-5</td>
</tr>
<tr>
<td>100% Medium Weathering/Low Raveling</td>
<td></td>
<td>74</td>
<td>69</td>
<td>-5</td>
</tr>
<tr>
<td>100% High Weathering/Low Raveling</td>
<td></td>
<td>74</td>
<td>38</td>
<td>-36</td>
</tr>
</tbody>
</table>
Defining a Northern Climate

• Weather data used to define which airfield inspections to include

• Air Freezing Index (AFI), mean annual temperature, and length of frost season chosen as indices
 – WorldIndex database utilized and cross-referenced with other sources
Air Freezing Index (AFI)

• The AFI is a measure of the collective magnitude and length of air temperatures below the freezing point
 – Calculated via the daily mean air temperature

• In other words, it is the total number of degree-days of freezing for a year
Defining a Northern Climate

• Roughly defined a northern climate as:
 – AFI at a minimum of 1,000° F-days
 – Mean annual temperature at a maximum of 50° F
 – Length of frost season at least 100 days/year
Data Excluded from Analysis

• Some inspection data removed from data set
 – Pavement over 30 years old at time of inspection
 – Shoulder, T-Hanger, or helipad pavements
 – Pavements older than 10 years with PCIs of 100
 ➢ Assumed improper construction history within database
Airfields Examined

• 76 airfields in 15 states and 7 provinces
 – 2,446 inspection data points evaluated

• Average airfield has:
 – AFI of 2,000° F-days
 – Mean annual temperature of 44° F
 – Frost season length of 139 days
 – Averages similar to weather data from Green Bay, Wisconsin
Statistical Analysis
Outline – Statistical Analysis

• Linear lifetime deterioration rate trends
• Deterioration rates modeled in PAVEER™
• Statistically modeled deterioration rates
• Comparison to historic deterioration rates
• Application to pavement management
Linear Lifetime Deterioration Rate Trends

• Linear lifetime deterioration rates for age groups of each pavement type examined
 – 0-10 years old at inspection
 – 10-20 years old at inspection
 – 20-30 years old at inspection

• Deterioration rates combined into bins with range of 1 PCI point/year

• Results scaled to 100% for each age group
Deterioration Rate Distribution - AC

Percentage of sections

Linear Lifetime Deterioration Rate (PCI Points/Year)

0-10 Years
10-20 Years
20-30 Years
Deterioration Rate Distribution - AAC

Percentage of sections

Linear Lifetime Deterioration Rate (PCI Points/Year)

0-10 Years
10-20 Years
20-30 Years
Deterioration Rate Distribution - APC

Percentage of sections

Linear Lifetime Deterioration Rate (PCI Points/Year)

0-10 Years
10-20 Years
20-30 Years
PAVER™ Deterioration Models
Deterioration Rates Modeled in PAVER™

- Examined models with varying number of coefficients
- Models selected based on fit and intermediate deterioration rate trends
- PAVER™ boundary lines are constant distance from best fit line throughout time
- The confidence interval used effects limits of boundary lines
 - 95% confidence interval applied (± 1.96 standard deviations)
Selected PAVER™ AC Model (25 Years)
PAVER™ AC Model Statistics

• 899 data points used
• Five coefficients, 4th order, best fit line selected
• Annual deterioration rates primarily range from 1.6 to 2.7 PCI points/year
 – Exception in final 4 years where curve is steeper
• Best fit line has PCI of 70 at 16 years
• At year 25, PCI boundary lines at 64 and 26
Selected PAVER™ AAC Model (25 Years)
PAVER™ AAC Model Statistics

- 950 data points used
- Six coefficients, 5th order, best fit line selected
- Annual deterioration rates primarily range from 1.1 to 3.4 PCI points/year
 - Exceptions in first 2 years where curve steeper and last 2 years where curve is flatter
- Best fit line has PCI of 70 at 13 years
- At year 25, PCI boundary lines at 75 and 36
Selected PAVER™ APC Model (30 Years)
PAVER™ APC Model Statistics

• 458 data points used
• Six coefficients, 5th order, best fit line selected
• Annual deterioration rates primarily range from 0.0 to 4.8 PCI points/year
 – Exceptions in first 2 years and last 3 years where curve is steeper
• Best fit line has PCI of 70 at 7 years
• At year 30, PCI boundary lines at 43 and 4
PAVER™ Initial Deterioration APC Model
PAVER™ APC Initial Deterioration

• Only data in first 10 years considered
• Constrained PAVER™ to linear best fit line
• 214 data points used
• Annual deterioration rate is 4.3 PCI points/year
• At year 10, PCI boundary lines at 72 and 42
• After year 10, linear deterioration slows to ~1 PCI point/year
Statistical Models
Statically Modeled Deterioration Rates

• SAS software regression used to model deterioration for each pavement type

• Influential outliers identified and removed using Cook’s distance (Cook’s D)
 – Cook’s distance can quantify the influence of each data point during regression analysis
 – Most influential outliers are located toward right side of graph where data diverge
Example of Outliers Removed via Cook’s D
Development of Normal Boundary Lines

- Upper and lower normal boundary limits defined
- Data broken into age groups and percentiles examined
- Middle 2/3 of data points defined as normal
- Trend lines fit through percentiles to smooth curves and define limits by equation
Identified AC Model

Identified Normal Boundaries

SAS Fit Curve
Comparison of AC Deterioration Rates

PCI vs. Age

PAVER™ Fit Curve

SAS Fit Curve

2 PCI Points/Year

3 PCI Points/Year
Comparison of AC Normal Ranges

![Comparison of AC Normal Ranges](image)

- **PCI**
- **Age**
- **UFC Normal Boundaries**
- **Identified Normal Boundaries**

- 2 PCI Points/Year
- 3 PCI Points/Year
Summary of AC Deterioration Rates

• Average deterioration can be approximated by:
 – 2 PCI points/year for first 21 years
 – 3.5 to 4.5 PCI points/year beyond year 21

• Identified normal boundaries can be approximated by linear deterioration
 – 1.25 PCI points/year for upper boundary
 – 3.1 PCI points/year for lower boundary
• Critical PCI of 70 with normal deterioration triggers rehabilitation between 9-22 years
 – Both fit lines reach PCI of 70 at 16 years
 – Rehabilitation at 9 years is not efficient
 ➢ Look at localized maintenance options to extend life
 – Meeting critical PCI should not automatically trigger rehabilitation
Identified AAC Model

- Identified Normal Boundaries
- SAS Fit Curve
Comparison of AAC Deterioration Rates

Graph showing the comparison of AAC deterioration rates with PCI points per year:
- PAVER™ Fit Curve: 2 PCI Points/Year
- SAS Fit Curve: 3 PCI Points/Year

Age scale: 0 to 25
PCI scale: 0 to 100
Comparison of AAC Normal Ranges
Summary of AAC Deterioration Rates

• Average deterioration can be approximated by:
 – 3 PCI points/year for first 8 years
 – 1.5 PCI points/year for next 17 years

• Identified upper normal boundary can be approximated by linear deterioration
 – 1.6 PCI points/year

• Identified lower normal boundary not captured by linear approximation
Application to Pavement Management - AAC

• Expect moderate initial decrease after overlay
 – Caused by underlying distresses

• Critical PCI of 70 with normal deterioration triggers rehabilitation between 7-20 years
 – Both fit lines reach PCI of 70 at 12 years
 – Rehabilitation at 7 years is not efficient
 ➢ Look at localized maintenance options to extend life
 – Meeting critical PCI should not automatically trigger rehabilitation
Identified APC Model

Identified Normal Boundaries

SAS Fit Curve
Comparison of APC Deterioration Rates

PCI vs. Age

- PAVER™ Fit Curve
- SAS Fit Curve

2 PCI Points/Year
3 PCI Points/Year
Comparison of APC Normal Ranges

- **PCI**
- **Age**
- **UFC Normal Boundaries**
- **Identified Normal Boundaries**

- 2 PCI Points/Year
- 3 PCI Points/Year
Summary of APC Deterioration Rates

• Three stages of deterioration
 – Steep initial drop in years 0-10
 – Stabilization in years 10-20
 – Continued deterioration in years 20-30

• Linear deterioration model does not capture behavior of pavement
Application to Pavement Management - APC

• Expect large initial decrease after overlay
 – Caused by underlying distresses and joints
• Proper maintenance after initial decrease can stabilize and extend life of pavement
Comparison of Identified Normal Ranges
Conclusions

• AC
 – Identified normal boundaries have higher deterioration rates than UFC boundaries
 – Average deterioration rate and identified normal boundaries can be approximated linearly

• AAC
 – Identified normal boundaries have lower deterioration rates than UFC boundaries
 – Identified normal boundaries generally have slightly higher deterioration rate than AC boundaries
Conclusions

• APC
 – Historic UFC normal boundary does not capture observed pavement life cycle
 – Expect large initial decrease after overlay
 – Proper maintenance after initial decrease can stabilize and extend life of pavement
 – For typical sections, rehabilitation will be required after 25 years
Conclusions

• Look at localized maintenance options to extend life
• Meeting critical PCI should not automatically trigger rehabilitation
• Ensure adequate pavement structure during design phase
Acknowledgments

• Monty Wade, P.E.
• Gen Long, P.E., LEED AP
• Kelsey Dzwilewski, Ph.D. candidate
Thank you!

Peter-Paul Dzwilewski, P.E.
217-398-3977
pdzwilewski@appliedpavement.com